AP CALCULUS (AB)
 Unit 5
 Test - Sample

Name \qquad
Date
Period \qquad

No calculators may be used on this portion of the test.

Suppose $g(x)=\int_{-1}^{x} f(t) d t$ and $h(x)=\int_{0}^{x^{2}} f(t) d t$. Use the graph of f shown to evaluate the following.

1. $g(-2)$

2. $g(4)$
3. $g^{\prime}(1)$
4. $g^{\prime \prime}(0.5)$
5. $h(-1)$
6. $h^{\prime}(\sqrt{3})$

Evaluate.
8. $\int \sec ^{2}(2-x) d x$
9. $\int e^{x}\left(1+e^{x}\right)^{10} d x$
10. $\int \alpha \tan \alpha^{2} d \alpha$
11. $\int \frac{z}{3+z} d z$

Evaluate.
12. $\int_{1}^{2}\left(u-2^{u}\right) d u$
13. $\int_{0}^{3}\left|x^{2}-4\right| d x$
14. $\int_{0}^{1 / 2} \frac{1}{1+4 y^{2}} d y$
15. $\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{2}}}$

AP CALCULUS (AB)
 Unit 5
 Test - Sample

Name
Date
Period
\qquad
\qquad

Calculators may be used on this portion of the test.
A group of teachers attends a diet support group every week. A teacher monitors her rate of weight loss, $W(t)$, in pounds per week. Use the data from the table to answer the following.
16. Using units, describe what $\int_{0}^{10} W(t) d t$ represents.

\boldsymbol{t}	$\boldsymbol{W}(\boldsymbol{t})$
0	4.0
2	3.1
5	2.8
6	2.3
7	1.7
9	1.4
10	1.9

17. Use trapezoids with three subdivisions to approximate $\int_{0}^{10} W(t) d t$.
18. When the teacher first joined the diet support group, her weight was 184 pounds.

Estimate her weight at week 10 using three rectangles with right endpoints as sample points. (Hint: $W(t)$ is the rate of weight loss.)

Suppose a particle travels along a linear path at a velocity of $v(t)=\frac{1}{\sqrt{t}}-\frac{3}{2}$, in meters per second, $t \geq 1$ second.
19. Calculate $\int_{1}^{4}|v(t)| d t$.
20. Explain what $\int_{1}^{4}|v(t)| d t$ represents. Include units in your explanation.
21. Calculate the displacement of the particle over the interval $[1,6]$.

