AP CALCULUS (AB)	Name
Unit 5	Date
Test – Sample	Period

No calculators may be used on this portion of the test.

Suppose $g(x) = \int_{-1}^{x} f(t) dt$ and $h(x) = \int_{0}^{x^{2}} f(t) dt$. Use the graph of f shown to evaluate the following.

4. g'(1)

5. g''(0.5)

6. h(-1)

7. $h'(\sqrt{3})$

Evaluate.

8.
$$\int \sec^2(2-x) dx$$
 9. $\int e^x (1+e^x)^{10} dx$

10. $\int \alpha \tan \alpha^2 d\alpha$ 11. $\int \frac{z}{3+z} dz$

Evaluate.

12.
$$\int_{1}^{2} (u-2^{u}) du$$
 13. $\int_{0}^{3} |x^{2}-4| dx$

14.
$$\int_{0}^{1/2} \frac{1}{1+4y^2} dy$$
 15.
$$\int_{0}^{1} \frac{x \, dx}{\sqrt{1-x^2}}$$

AP CALCULUS (AB)	Name
Unit 5	Date
Test – Sample	Period

Calculators may be used on this portion of the test.

A group of teachers attends a diet support group every week. A teacher monitors her rate of weight loss, W(t), in pounds per week. Use the data from the table to answer the following.

16. Using units, describe what $\int_0^{10} W(t) dt$ represents.

t	W(t)
0	4.0
2	3.1
5	2.8
6	2.3
7	1.7
9	1.4
10	1.9

17. Use trapezoids with three subdivisions to approximate $\int_0^{10} W(t) dt$.

18. When the teacher first joined the diet support group, her weight was 184 pounds. Estimate her weight at week 10 using three rectangles with right endpoints as sample points. (Hint: W(t) is the rate of weight *loss*.) Suppose a particle travels along a linear path at a velocity of $v(t) = \frac{1}{\sqrt{t}} - \frac{3}{2}$, in meters per second, $t \ge 1$ second.

19. Calculate $\int_{1}^{4} |v(t)| dt$.

20. Explain what $\int_{1}^{4} |v(t)| dt$ represents. Include units in your explanation.

21. Calculate the displacement of the particle over the interval [1, 6].