AP Calculus AB Midterm Exam Review for Units 1 - 3

The following problems provide a good starting point for your review of Units $1-3$. It is not wise to assume that this review is sufficient for studying all material from Units $1-3$. Students are advised to review exams, quizzes, homework, and supplements in addition to working the following problems. Answers for even-numbered problems can be found at the end of this document.

Unit 1: Limits, Continuity, and Rates of Change

p. 129: $45,46,52$
pp. 140-141: 4, 16, 18, 29 (It is now OK to use L'Hôpital for any limit as long as it applies.)
p. $151: 34,36,37$
pp. 167-169: 8, 11, 16, 36, 40, 47, 49, 50a

Unit 2: Differentiation

pp. 265-266: $1-5,7,8,11,13,15,20,21,22,27,28,31,32,35,39,60$

Unit 3: The Shape of a Curve

p. 289: 10, 12
p. 298: 19, 23
pp. 352-353: 8, 10, 11, 13, 14, 18(a,b)

Stewart Textbook Even Answers

Unit 1

p. 129
46. $(a, b)=\left(\frac{1}{2}, \frac{1}{2}\right)$
52. Since f is a linear combination of a cube root function and a linear function, f is continuous on $[0,1]$. Since $f(0)=-1$ and $f(1)=1$, we have $f(0)<0<f(1)$. By IVT, there exists some c on the interval $(0,1)$ such that $f(c)=0$.
pp. 140-141
4a. 2
4b. -1
4c. $-\infty$
4d. $-\infty$
4e. ∞
4f. Vertical: $x=0, x=2$; Horizontal: $y=-1, y=2$
16. 0
18. 2
p. 151
34. $f(x)=\sqrt[4]{x}, x=16$ OR $f(x)=\sqrt[4]{16+x}, x=0$
36. $f(x)=\tan x, x=\frac{\pi}{4}$
pp. 167-169
8. $\frac{1}{3}$
16. $\frac{1}{3}$
36. $y-2=6 x ; y-\frac{1}{2}=\frac{3}{8}(x+1)$
40. $f(x)=x^{6}, x=2$

50a. $F^{\prime}(1950) \approx 0.11, F^{\prime}(1965) \approx-0.16, F^{\prime}(1987) \approx 0.02$

Unit 2

pp. 265-266
2. $y^{\prime}=\frac{3}{5 x^{8 / 5}}-\frac{1}{2 x^{3 / 2}}$
4. $y^{\prime}=\frac{\sec ^{2} x+\sec ^{2} x \cos x+\tan x \sin x}{(1+\cos x)^{2}}$ OR $y^{\prime}=\frac{\sec ^{2} x+\sec x+\tan x \sin x}{(1+\cos x)^{2}}$
8. $\frac{d y}{d x}=\frac{y \cos x-e^{y}}{x e^{y}-\sin x}$
20. $y^{\prime}=e^{x \sec x}(x \sec x \tan x+\sec x)$
22. $y^{\prime}=2 x \sec \left(1+x^{2}\right) \tan \left(1+x^{2}\right)$
28. $y^{\prime}=(\cos x)^{x}(\ln (\cos x)-x \tan x)$
32. $y^{\prime}=-e^{\cos x} \sin x-e^{x} \sin \left(e^{x}\right)$
60. Tangent: $y-1=-\frac{4}{5}(x-2)$; Normal: $y-1=\frac{5}{4}(x-2)$

Unit 3

p. 289
10. Since f is continuous on $[-2,2]$ and differentiable on $(-2,2)$, the MVT applies. $c= \pm \frac{2}{\sqrt{3}}$
12. Since f is continuous on $[-2,2]$ and differentiable on $(-2,2)$, the MVT applies. $c=\sqrt{3}$ pp. 352-353
8. $\frac{4}{3}$ 10. ∞
14. 1

18a. Increase: $(-2,0) \cup(4, \infty)$; Decrease: $(-\infty,-2) \cup(0,4)$
18b. Relative Max: $x=0$; Relative Min: $x=-2,4$

