AP CALCULUS AB
 Supplement 1.7
 Continuity
 Contity

Name
Date
Period \longrightarrow
\qquad

1. Use the graph of $k(x)$ to answer the following.
a. Identify each discontinuity for k. Use the definition of continuity to justify each discontinuity. Classify each discontinuity as either removable, jump, or infinite.

b. Redefine k so that it is continuous at each removable discontinuity.
2. Let $g(x)=\left\{\begin{array}{ll}-x & \text { if } x \leq-1 \\ 1-x^{2} & \text { if }-1<x<1 . \\ x-1 & \text { if } x>1\end{array}\right.$.
a. Determine whether g is continuous at $x=-2,-1,0,1,2$. Use the definition of continuity to justify each point of continuity and discontinuity. Classify each discontinuity as either removable, jump, or infinite. (Hint: You had to graph g on Supp 1.5.)
b. Redefine g so that it is continuous at each removable discontinuity.
3. Suppose $f(x)=x^{3}+5$.
a. Show that $f(c)=13$ for some c on the interval $(-1,3)$. Find the value(s) of c.
b. Use IVT to verify that there is a root for $f(x)$ on the interval $(-2,1)$.
4. Suppose the function h is continuous for all real numbers. Use the table below to answer the following questions.

x	0	1	2	3	4	5
$h(x)$	-12	-8	-7	1	3	-2

a. Suppose $g(x)=3 h(x)-6$. Show that there must be a value n for $3<n<4$ such that $g(n)=0$.
b. What is the fewest number of x-values for which h must equal 0 ? Explain your reasoning.

Supplement 1.7 Solutions

1a. $\quad x=-4$; Justification: $\lim _{x \rightarrow-4} k(x)=\infty$ and $k(-4)$ is undefined $\rightarrow \lim _{x \rightarrow-4} k(x) \neq k(-4)$;
Classification: infinite
$x=-2$; Justification: $\lim _{x \rightarrow-2} k(x)$ DNE and $k(-2)=2 \rightarrow \lim _{x \rightarrow-2} k(x) \neq k(-2)$; Classification: infinite
$x=0$; Justification: $\lim _{x \rightarrow 0} k(x)=0$ and $k(0)$ is undefined $\rightarrow \lim _{x \rightarrow 0} k(x) \neq k(0)$;
Classification: removable
$x=1$; Justification: $\lim _{x \rightarrow 1} k(x)$ DNE and $k(1)$ is undefined $\rightarrow \lim _{x \rightarrow 1} k(x) \neq k(1)$;
Classification: infinite
1b. $k(0)=0$

2a. Continuous at $x=-2$; Justification: $\lim _{x \rightarrow-2} g(x)=2$ and $g(-2)=2 \rightarrow \lim _{x \rightarrow-2} g(x)=g(-2)$
Discontinuous at $x=-1$; Justification: $\lim _{x \rightarrow-1} g(x)$ DNE and $g(-1)=1 \rightarrow$
$\lim _{x \rightarrow-1} g(x) \neq g(-1)$; Classification: jump
Continuous at $x=0$; Justification: $\lim _{x \rightarrow 0} g(x)=1$ and $g(0)=1 \rightarrow \lim _{x \rightarrow 0} g(x)=g(0)$
Discontinuous at $x=1$; Justification: $\lim _{x \rightarrow 1} g(x)=0$ and $g(1)$ is undefined \rightarrow $\lim _{x \rightarrow 1} g(x) \neq g(1)$; Classification: removable
Continuous at $x=2$; Justification: $\lim _{x \rightarrow 2} g(x)=1$ and $g(2)=1 \rightarrow \lim _{x \rightarrow 2} g(x)=g(2)$

2b. $g(1)=0$

3a. Since f is a cubic function, f is continuous on $[-1,3]$. Since $f(-1)=4$ and $f(3)=32$, we have $f(-1)<13<f(3)$. By IVT, there exists some c on the interval $(-1,3)$ such that $f(c)=13$.

3b. Since f is a cubic function, f is continuous on $[-2,1]$. Since $f(-2)=-3$ and $f(1)=6$, we have $f(-2)<0<f(1)$. By IVT, there exists some c on the interval $(-2,1)$ such that $f(c)=0$.

4a. Since h is continuous for all reals, g (which is a linear combination of h) is continuous on $[3,4]$. Since $g(3)=3 h(3)-6=-3$ and $g(4)=3 h(4)-6=3$, we have $g(3)<0<g(4)$. By IVT, there exists some n on the interval $(3,4)$ such that $g(n)=0$.

4 b . The function h must equal zero for at least two values of x.
Since h is continuous for all reals, h is continuous on $[2,3]$. Since $h(2)=-7$ and $h(3)=1$, we have $h(2)<0<h(3)$. By IVT, there exists some c_{1} on the interval $(2,3)$ such that $h\left(c_{1}\right)=0$. Since h is continuous for all reals, h is continuous on [4, 5]. Since $h(4)=3$ and $h(5)=-2$, we have $h(5)<0<h(4)$. By IVT, there exists some c_{2} on the interval $(4,5)$ such that $h\left(c_{2}\right)=0$.

