AP CALCULUS AB
Supplement 1.8
Approximating Derivatives

Name \qquad
Date
Period \square
\qquad

1. Use the table to approximate the expressions in $\mathrm{a}-\mathrm{d}$, and answer question e .

\boldsymbol{x}	-2	-1	0	2	3	5	7
$\boldsymbol{f}(\boldsymbol{x})$	-4	6	8	10	11	15	19
$\boldsymbol{g}(\boldsymbol{x})$	3	0	-1	2	7	8	9
$\boldsymbol{h}(\boldsymbol{x})$	18	22	28	39	50	44	36

a. $f^{\prime}(2)$
b. $f^{\prime}(-2)$
c. $3 h^{\prime}(0)-2 g^{\prime}(7)$
d. $h^{\prime}(4)-f^{\prime}(4)$
e. Explain why $f^{\prime}(2)$, approximated in (a) above, may be undefined although a numeric value was obtained by estimation.
2. Use the graph to find an exact or approximate value, whichever is appropriate, for each expression.
a. $r^{\prime}(1)$
b. $r^{\prime}(2)$
c. $r^{\prime}(3)$
d. $r^{\prime}(4)$
e. $r^{\prime}(5)$
f. $r^{\prime}(6)$
g. $r^{\prime}(8)$

Supplement 1.8 Solutions

1a. $f^{\prime}(2) \approx 1$
1b. $f^{\prime}(-2) \approx 10$
1c. $3 h^{\prime}(0)-2 g^{\prime}(7) \approx 16$
1d. $h^{\prime}(4)-f^{\prime}(4) \approx-5$

1e. There may be a discontinuity, vertical tangent, or a cusp/corner at $x=2$.
2a. $\quad r^{\prime}(1) \approx-2$
2b. $r^{\prime}(2)=0$

2c. $r^{\prime}(3) \approx 2$
2d. $r^{\prime}(4)$ undefined
2e. $r^{\prime}(5)=0$
2f. $\quad r^{\prime}(6)$ undefined

2g. $\quad r^{\prime}(8)=-\frac{1}{2}$

