1.1 – The Limit of a Function

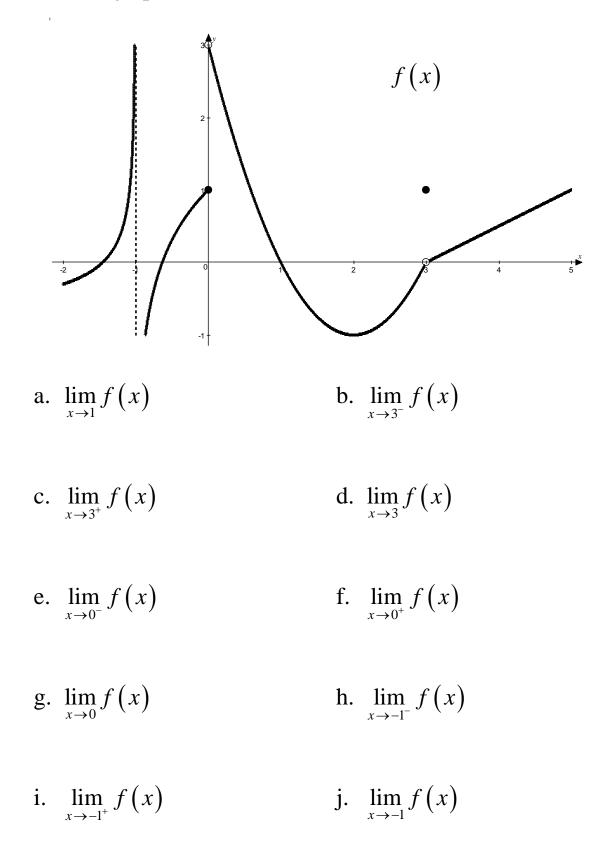
Introduction to Limits

The limit is the most fundamental operation of the calculus. To find a limit, we determine the *behavior* of *f* near x = a, whether or not f(a) is defined. The notation for limits is as follows:

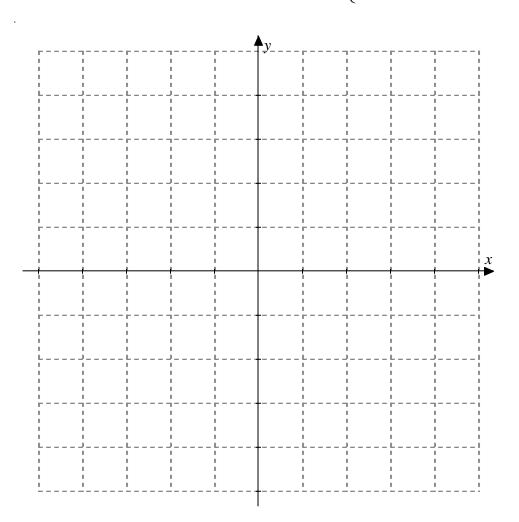
- Two-sided: $\lim_{x \to a} f(x) = L$
- One-sided from the left: $\lim_{x \to a^-} f(x) = L$
- One-sided from the right: $\lim_{x \to a^+} f(x) = L$

In essence, we are saying that the values of f get closer and closer to L as x approaches a.

1. Use the graph of f below to find each limit.



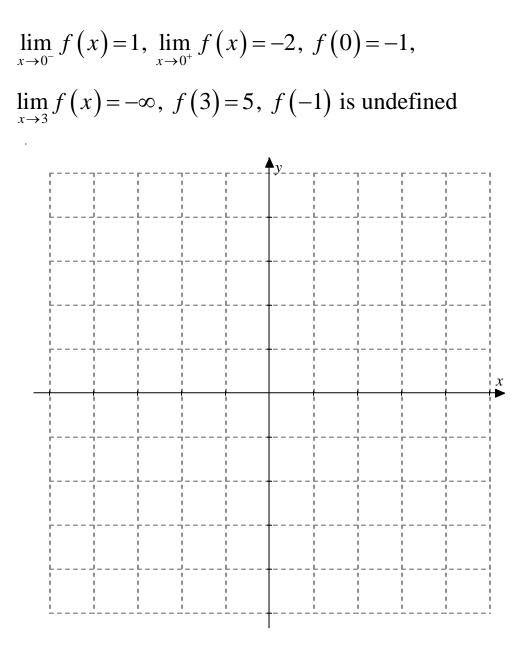
2. Sketch a graph of the function $g(x) = \begin{cases} x, & \text{if } x < -2\\ 2 - x^2, & \text{if } -2 < x \le 2\\ 5 - 2x, & \text{if } x > 2 \end{cases}$



Use the graph above to determine the following limits:

a. $\lim_{x \to -2} g(x)$ b. $\lim_{x \to 2} g(x)$

3. Sketch the graph of a function f that satisfies the following:



Estimate each limit by completing the corresponding table of values.

a.
$$\lim_{x \to -1} \frac{\sin(x+1)}{x+1} \approx$$

x	-1.1	-1.01	-0.99	-0.9
$\frac{\sin(x+1)}{\sin(x+1)}$				
<i>x</i> +1				

b.
$$\lim_{x \to 3^{-}} \frac{x^2}{3-x} \approx$$

X	2.9	2.99	3.01	3.1
x^2				
$\overline{3-x}$				

c.
$$\lim_{x \to 0} \cos\left(\frac{4}{x}\right) \approx$$

x	-0.1	-0.01	0.01	0.1
$\cos\left(\frac{4}{x}\right)$				