1.1 - The Limit of a Function

Introduction to Limits

The limit is the most fundamental operation of the calculus. To find a limit, we determine the behavior of f near $x=a$, whether or not $f(a)$ is defined. The notation for limits is as follows:

- Two-sided: $\lim _{x \rightarrow a} f(x)=L$
- One-sided from the left: $\lim _{x \rightarrow a^{-}} f(x)=L$
- One-sided from the right: $\lim _{x \rightarrow a^{+}} f(x)=L$

In essence, we are saying that the values of f get closer and closer to L as x approaches a.

1. Use the graph of f below to find each limit.

a. $\lim _{x \rightarrow 1} f(x)$
b. $\lim _{x \rightarrow 3^{-}} f(x)$
c. $\lim _{x \rightarrow 3^{+}} f(x)$
d. $\lim _{x \rightarrow 3} f(x)$
e. $\lim _{x \rightarrow 0^{-}} f(x)$
f. $\lim _{x \rightarrow 0^{+}} f(x)$
g. $\lim _{x \rightarrow 0} f(x)$
h. $\lim _{x \rightarrow-1^{-}} f(x)$
i. $\lim _{x \rightarrow-1^{+}} f(x)$
j. $\lim _{x \rightarrow-1} f(x)$
2. Sketch a graph of the function $g(x)=\left\{\begin{array}{ll}x, & \text { if } x<-2 \\ 2-x^{2}, & \text { if }-2<x \leq 2 . \\ 5-2 x, & \text { if } x>2\end{array}\right.$.

Use the graph above to determine the following limits:
a. $\lim _{x \rightarrow-2} g(x)$
b. $\lim _{x \rightarrow 2} g(x)$

3. Sketch the graph of a function f that satisfies the following:

$$
\lim _{x \rightarrow 0^{-}} f(x)=1, \lim _{x \rightarrow 0^{+}} f(x)=-2, f(0)=-1,
$$

$\lim _{x \rightarrow 3} f(x)=-\infty, f(3)=5, f(-1)$ is undefined

4. Estimate each limit by completing the corresponding table of values.
a. $\lim _{x \rightarrow-1} \frac{\sin (x+1)}{x+1} \approx$

x	-1.1	-1.01	-0.99	-0.9
$\frac{\sin (x+1)}{x+1}$				

b. $\lim \frac{x^{2}}{3-x} \approx$ $\lim _{x \rightarrow 3^{-}} 3-x$

x	2.9	2.99	3.01	3.1
$\frac{x^{2}}{3-x}$				

c. $\lim _{x \rightarrow 0} \cos \left(\frac{4}{x}\right) \approx$

x	-0.1	-0.01	0.01	0.1
$\cos \left(\frac{4}{x}\right)$				

