1.3 - Finding Limits Analytically, Part II

1. Consider the function $g(x)=\frac{x^{2}-16}{|x-4|}$.
a. Re-write g as a piecewise-defined function.
b. Find $\lim _{x \rightarrow 4} g(x)$. Use two-sided limits to justify your answer.
2. Use the procedure from \#1 to find the following limits.
a. $\lim _{x \rightarrow 5^{-}} \frac{x^{4}-5 x^{3}}{|5-x|}$
b. $\lim _{u \rightarrow 9^{+}} \frac{x-9}{\left|x^{2}-7 x-18\right|}$

Composition Rule for Limits

If $\lim _{x \rightarrow a} g(x)=L$ and $f(L)$ is defined, then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a}(g(x))\right)=f(L)
$$

3. $\lim _{x \rightarrow 3} \ln \left(\frac{x-3}{x^{2}-9}\right)$
4. $\lim _{x \rightarrow 1} \arcsin \left(\frac{1-\sqrt{x}}{1-x}\right)$
5. $\lim _{x \rightarrow 0} e^{\frac{1}{x^{2}}}$
6. $\lim _{x \rightarrow 0^{+}}|\ln x|$

The Squeeze Theorem

If $f(x) \leq g(x) \leq h(x)$ when x is near a and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$.
7. If $3-2 x+x^{2} \leq r(x) \leq 1+2 x-x^{2}$ for all x, find $\lim _{x \rightarrow 1} r(x)$.
8. Use the Squeeze Theorem to find $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{4}{x}\right)$.

