1.4 - Limits Involving Infinity, Part I

Definition of Vertical Asymptote

The line $x=a$ is a vertical asymptote of f if

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty \text { or }-\infty
$$

AND/OR

$$
\lim _{x \rightarrow a^{+}} f(x)=\infty \text { or }-\infty
$$

Definition of Horizontal Asymptote

The line $y=b$ is a horizontal asymptote of f if

$$
\lim _{x \rightarrow \infty} f(x)=b
$$

AND/OR

$$
\lim _{x \rightarrow-\infty} f(x)=b
$$

1. Use the graph given above to identify all horizontal and vertical asymptotes of f. Describe each using limits.

2. Sketch the graph of a function f that satisfies the following:

$$
\lim _{x \rightarrow-\infty} f(x)=-3, \lim _{x \rightarrow-1} f(x)=-\infty, \lim _{x \rightarrow 2^{-}} f(x)=\infty
$$

$$
f(2)=1, \lim _{x \rightarrow 2^{+}} f(x)=-1, \lim _{x \rightarrow \infty} f(x)=-\infty
$$

Infinite Limits

3. Let $g(x)=\frac{4-x^{2}}{3-x}$.
a. $\lim _{x \rightarrow 3^{-}} g(x)$
b. $\lim _{x \rightarrow 3^{+}} g(x)$
c. Based on the results from (a) and (b), what can we determine about the graph of g ?
4. Find the following limits. What does the value of the limit indicate about the graph of each function?
a. $\lim _{x \rightarrow 3^{-}} \frac{x-5}{x^{2}-9}$
b. $\lim _{\theta \rightarrow \pi / 2^{+}} \tan \theta$
