1.5 – Limits Involving Infinity, Part II

1. Find the following limits.

a.
$$\lim_{x \to -\infty} (4x - 3)$$

b. $\lim_{x \to \infty} \left(4x^2 + 5x + 2 \right)$

c.
$$\lim_{x \to \infty} \left(x^3 - 6x \right)$$

- d. $\lim_{x \to -\infty} \left(2x^3 + x^2 \right)$
- e. $\lim_{x \to -\infty} e^{2x}$
- f. $\lim_{x \to \infty} e^{x^2 + x}$

Important Rule for Limits at Infinity

Suppose $c \in \mathbb{R}$, $r \in \mathbb{Q}$ such that r > 0, and x^r is defined for all x. Then

$$\lim_{x \to \infty} \frac{c}{x^r} = 0 \text{ and } \lim_{x \to -\infty} \frac{c}{x^r} = 0$$

2. Find the following limits. What does each result indicate about the end behavior of the function?

a.
$$\lim_{x \to \infty} \frac{3x^3 - x + 2}{4x^5 - 1}$$

b.
$$\lim_{x \to -\infty} \frac{x^2 - 2x^6}{5x^6 - 3x + 4}$$

c.
$$\lim_{x \to -\infty} \frac{x^{5/3} - 2}{x^{2/3} + 1}$$

d.
$$\lim_{x \to \infty} \frac{x-1}{\sqrt{5x^2+2}}$$

e.
$$\lim_{x \to -\infty} \frac{x-1}{\sqrt{5x^2+2}}$$