1.5 - Limits Involving Infinity, Part II

1. Find the following limits.
a. $\lim _{x \rightarrow-\infty}(4 x-3)$
b. $\lim _{x \rightarrow \infty}\left(4 x^{2}+5 x+2\right)$
c. $\lim _{x \rightarrow \infty}\left(x^{3}-6 x\right)$
d. $\lim _{x \rightarrow-\infty}\left(2 x^{3}+x^{2}\right)$
e. $\lim _{x \rightarrow-\infty} e^{2 x}$
f. $\lim _{x \rightarrow \infty} e^{x^{2}+x}$

Important Rule for Limits at Infinity

Suppose $c \in \mathbb{R}, r \in \mathbb{Q}$ such that $r>0$, and x^{r} is defined for all x. Then

$$
\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0 \text { and } \lim _{x \rightarrow-\infty} \frac{c}{x^{r}}=0
$$

2. Find the following limits. What does each result indicate about the end behavior of the function?
a. $\lim _{x \rightarrow \infty} \frac{3 x^{3}-x+2}{4 x^{5}-1}$
b. $\lim _{x \rightarrow-\infty} \frac{x^{2}-2 x^{6}}{5 x^{6}-3 x+4}$
c. $\lim _{x \rightarrow-\infty} \frac{x^{5 / 3}-2}{x^{2 / 3}+1}$
d. $\lim _{x \rightarrow \infty} \frac{x-1}{\sqrt{5 x^{2}+2}}$
e. $\lim _{x \rightarrow-\infty} \frac{x-1}{\sqrt{5 x^{2}+2}}$
