1.6 - Continuity

Limit Definition of Continuity

A function f is continuous at $x=a$ if

- $f(a)$ is defined
- $\lim _{x \rightarrow a} f(x)$ exists
- $\lim _{x \rightarrow a} f(x)=f(a)$
** Roughly speaking, a function is said to be continuous if it is connected. Can you trace the graph of the function without lifting your finger?
** A function f is right-continuous at $x=a$ if the above is true for limits from the right and left-continuous if the above is true for limits from the left.

1. Use the graph of f to answer the following.

a. For what values of x is the function $f(x)$ discontinuous? Justify your answers.
b. Classify each discontinuity above as either a removable, jump, or infinite discontinuity.
c. Redefine f so that it is continuous at each removable discontinuity.
2. For what value(s) of x are the following functions discontinuous? Justify each answer and classify each discontinuity.
a. $f(x)=\frac{x-3}{x^{2}-9}$
b. $y=\frac{|x+2|}{x+2}$
c. $r(\theta)=\tan \theta$
3. Sketch a graph of $g(x)=\left\{\begin{array}{ll}\cos (\pi x), & \text { if } x<-2 \\ -x-1, & \text { if }-2<x<1 . \\ \ln x, & \text { if } x \geq 1\end{array}\right.$.

For what value(s) of x is g discontinuous? Justify each answer and classify each discontinuity.
4. Find the value of c such that $h(x)=\left\{\begin{array}{l}8-c x, \text { if } x<-5 \\ 4 x^{2}+3 c, \text { if } x \geq-5\end{array}\right.$ is continuous for all real numbers.
5. Determine whether the following functions are continuous at $x=c$. Justify each answer.
a. $f(x)=\left\{\begin{array}{l}x^{2}-2 x, x \leq 3 \\ 10-3 x, x>3\end{array}\right.$
b. $g(x)= \begin{cases}\ln (x+2), & x<-1 \\ \sin (\pi x), & x \geq-1\end{cases}$

