2.1 – The Power Rule

Basic Derivative Laws

Let *f* and *g* be differentiable functions of *x* and let $c \in \mathbb{R}$.

• Sum Rule:
$$\frac{d}{dx} \left[f(x) + g(x) \right] = f'(x) + g'(x)$$

• Constant Multiple Rule:
$$\frac{d}{dx} [cf(x)] = c f'(x)$$

- Derivative of a Constant: $\frac{d}{dx}[c] = 0$
- Derivative of a Linear Term: $\frac{d}{dx}[mx] = m$

Based on observations from your prior work with derivatives from Unit 1, give rules for the following:

• Power Rule:
$$\frac{d}{dx} [x^n] =$$

• Derivative of
$$e^x$$
: $\frac{d}{dx} \left[e^x \right] =$

1. Find the derivative for each function.

a.
$$f(x) = 9x^4 - 3e^x$$

b.
$$v(\alpha) = 2\alpha^{5/3} - \sqrt{\alpha}$$

c.
$$P = \frac{2 - t^3}{t^5}$$

d.
$$u(y) = 3\sqrt{y} \left(\sqrt[4]{y^3} - 2\right)$$

2. Calculate
$$\frac{dy}{dx}\Big|_{x=-2}$$
 given $y = 4x - 3 + \frac{2}{x^3}$.

3. Find an equation for the line tangent to $g(x) = 3 - 2\sqrt{x}$ at x = 25.

4. The **normal line** is defined as the line that passes through the point of tangency perpendicular to the tangent line. Find the values of *a* and *b* such that $f(x) = x^3 + ax + b$ has a normal line with equation 2x - 3y = 4 at x = -1.

5. Find the point(s) on the curve $g(x) = 5e^x - 3x$ where the tangent line is horizontal.