2.1 - The Power Rule

Basic Derivative Laws

Let f and g be differentiable functions of x and let $c \in \mathbb{R}$.

- Sum Rule: $\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)$
- Constant Multiple Rule: $\frac{d}{d x}[c f(x)]=c f^{\prime}(x)$
- Derivative of a Constant: $\frac{d}{d x}[c]=0$
- Derivative of a Linear Term: $\frac{d}{d x}[m x]=m$

Based on observations from your prior work with derivatives from Unit 1, give rules for the following:

- Power Rule: $\frac{d}{d x}\left[x^{n}\right]=$
- Derivative of $e^{x}: \frac{d}{d x}\left[e^{x}\right]=$

1. Find the derivative for each function.

a. $f(x)=9 x^{4}-3 e^{x}$
b. $v(\alpha)=2 \alpha^{5 / 3}-\sqrt{\alpha}$
c. $P=\frac{2-t^{3}}{t^{5}}$
d. $u(y)=3 \sqrt{y}\left(\sqrt[4]{y^{3}}-2\right)$
2. Calculate $\left.\frac{d y}{d x}\right|_{x=-2}$ given $y=4 x-3+\frac{2}{x^{3}}$.
3. Find an equation for the line tangent to $g(x)=3-2 \sqrt{x}$ at $x=25$.
4. The normal line is defined as the line that passes through the point of tangency perpendicular to the tangent line. Find the values of a and b such that $f(x)=x^{3}+a x+b$ has a normal line with equation $2 x-3 y=4$ at $x=-1$.
5. Find the point(s) on the curve $g(x)=5 e^{x}-3 x$ where the tangent line is horizontal.

