2.3 - Derivatives of Trigonometric Functions

1. Find $\frac{d}{d x}[\sin x]$ using the limit definition of the derivative.
2. Fill in the table of derivatives below.

$$
\begin{array}{ll}
\frac{d}{d x}[\sin x]= & \frac{d}{d x}[\csc x]= \\
\frac{d}{d x}[\cos x]= & \frac{d}{d x}[\sec x]= \\
\frac{d}{d x}[\tan x]= & \frac{d}{d x}[\cot x]=
\end{array}
$$

3. Use the derivatives of sine and cosine to prove the derivative of $y=\tan x$, as given above.
4. Find an equation of the line tangent to $f(x)=e^{x} \cos x$ at $x=\pi$.
5. Evaluate $\frac{d^{2} y}{d \theta^{2}}$ given $y=3 \sec \theta$.
6. Find the derivative of the function $h(x)=\frac{e^{x}}{2 x+\cot x}$.
7. Find the $118^{\text {th }}$ derivative of $r(x)=\sin x-83 x^{94}-6 e^{x}+4$.
8. For what value(s) of θ on $[0,3 \pi]$ does the graph of the function $h(\theta)=\sqrt{3} \theta+2 \cos \theta$ have a horizontal tangent?
