2.5 – The Chain Rule, Part II

The derivative of a general exponential function is given by

$$\frac{d}{dx} \left[a^x \right] =$$

1. Differentiate.

a.
$$y = e^{4x} \cos\left(x^4\right)$$

b.
$$f(v) = 6\tan\left(\frac{v}{v^2 - 4}\right)$$

c.
$$r = \sin^2(9\theta)$$

d.
$$h(x) = 3x^2 + 3^{x^2}$$

2. Find an equation for the line tangent to the curve $P = \frac{100}{1 + 24e^{-0.5t}} \text{ at } t = 0.$ 3. Use the table of values below to find the derivative of each function at the given value of *x*.

x	0	1	2
f(x)	-4	5	-2
g(x)	-10	2	3
f'(x)	-6	-3	4
g'(x)	5	8	9

a.
$$y = \frac{x^2}{f(x)}; x = 2$$

b.
$$y = g(f(x) - 3x); x = 1$$

c.
$$y = f(x)\sqrt{g(x)}; x = 2$$

Chain Rule as a Change of Variables

The Chain Rule can also be applied when differentiation problems require a change of variables, as given by

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

4. Suppose $y = \sin(2x)$, where x and y are function of t. Find $\frac{dy}{dx}$

$$\left. \frac{dy}{dt} \right|_{t=2}$$
 given that $x(2) = 3$ and $\left. \frac{dx}{dt} \right|_{t=2} = -5$.

5. You work for the Empire at a manufacturing plant on Coruscant. The cost of producing hyperdrive motivators is given by $C(h) = 7h^3 + 6h^2 + 102$, where *C* is cost in Imperial Credits and *h* is number of hyperdrive motivators produced. After 3 hours, your crew has produced 118 hyperdrive motivators, and is currently producing at a rate of 50 hyperdrive motivators per hour. What is the cost of producing hyperdrive motivators per hour for your crew at this time?