2.5 - The Chain Rule, Part II

The derivative of a general exponential function is given by

$$
\frac{d}{d x}\left[a^{x}\right]=
$$

1. Differentiate.
a. $y=e^{4 x} \cos \left(x^{4}\right)$
b. $f(v)=6 \tan \left(\frac{v}{v^{2}-4}\right)$
c. $r=\sin ^{2}(9 \theta)$
d. $h(x)=3 x^{2}+3^{x^{2}}$
2. Find an equation for the line tangent to the curve

$$
P=\frac{100}{1+24 e^{-0.5 t}} \text { at } t=0 .
$$

3. Use the table of values below to find the derivative of each function at the given value of x.

x	0	1	2
$f(x)$	-4	5	-2
$g(x)$	-10	2	3
$f^{\prime}(x)$	-6	-3	4
$g^{\prime}(x)$	5	8	9

a. $y=\frac{x^{2}}{f(x)} ; x=2$
b. $y=g(f(x)-3 x) ; x=1$
c. $y=f(x) \sqrt{g(x)} ; x=2$

Chain Rule as a Change of Variables

The Chain Rule can also be applied when differentiation problems require a change of variables, as given by

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}
$$

4. Suppose $y=\sin (2 x)$, where x and y are function of t. Find $\left.\frac{d y}{d t}\right|_{t=2}$ given that $x(2)=3$ and $\left.\frac{d x}{d t}\right|_{t=2}=-5$.
5. You work for the Empire at a manufacturing plant on Coruscant. The cost of producing hyperdrive motivators is given by $C(h)=7 h^{3}+6 h^{2}+102$, where C is cost in Imperial Credits and h is number of hyperdrive motivators produced. After 3 hours, your crew has produced 118 hyperdrive motivators, and is currently producing at a rate of 50 hyperdrive motivators per hour. What is the cost of producing hyperdrive motivators per hour for your crew at this time?
