2.6 – Implicit Differentiation, Part I

Not all mathematical relationships can be written in the explicit form y = f(x). The method of *implicit differentiation* is used to calculate derivatives of implicitly-defined relations.

- 1. Consider the curve *C*, given by $x^2 + 3y^2 = 1 + 3xy$.
 - a. Calculate $\frac{dy}{dx}$ for *C*.

b. Write equations for <u>both</u> tangents to *C* for x = 1.

2. Find an equation for the line tangent to the curve $x\sin(2y) + e^{xy} = 2$ at x = 1.

3. Find
$$\frac{d^2 y}{dx^2}$$
 for the curve defined by $4x^2 + y^2 = 1$.

4. Find
$$\frac{d^2 y}{dx^2}\Big|_{(2,1)}$$
 for the curve defined by $x^3 + 3x^2y^2 = 20$.