2.6 - Implicit Differentiation, Part I

Not all mathematical relationships can be written in the explicit form $y=f(x)$. The method of implicit differentiation is used to calculate derivatives of implicitly-defined relations.

1. Consider the curve C, given by $x^{2}+3 y^{2}=1+3 x y$.
a. Calculate $\frac{d y}{d x}$ for C.
b. Write equations for both tangents to C for $x=1$.
2. Find an equation for the line tangent to the curve $x \sin (2 y)+e^{x y}=2$ at $x=1$.
3. Find $\frac{d^{2} y}{d x^{2}}$ for the curve defined by $4 x^{2}+y^{2}=1$.
4. Find $\left.\frac{d^{2} y}{d x^{2}}\right|_{(2,1)}$ for the curve defined by $x^{3}+3 x^{2} y^{2}=20$.
