2.8 - Derivatives of Inverse Functions

1. Find the derivative of $f^{-1}(x)$ at $x=8$ given $f(x)=2 x^{3}$.
2. Unfortunately, not all functions have an inverse (or the inverse is very difficult to find). Develop a formula for the derivative of an inverse function that is independent of the inverse function itself.
3. Use the formula derived in \#2 to find $\left(g^{-1}\right)^{\prime}(2)$ given $g(x)=x-\sin x$.
4. Develop formulas for $\frac{d}{d x}[\arcsin x]$ and $\frac{d}{d x}\left[\tan ^{-1} x\right]$.
5. Calculate the derivative for the following functions.
a. $f(x)=x^{3} \sin ^{-1} 2 x$
b. $y=\arcsin \sqrt{x}$
c. $g(u)=(\arctan u)^{5}$
d. $x=\tan ^{-1}(\cos y)$
6. Use the following table to find the derivative of each at the given value of x.

x	-1	0	1	2
$f(x)$	0	6	2	-1
$g(x)$	5	1	0	1
$f^{\prime}(x)$	3	1	-3	-2
$g^{\prime}(x)$	-6	-2	1	0

a. $y=f^{-1}(x) ; x=2$
b. $y=g^{-1}(x) ; x=5$
c. $y=g^{-1}(f(x)) ; x=-1$

