2.8 – Derivatives of Inverse Functions

1. Find the derivative of $f^{-1}(x)$ at x = 8 given $f(x) = 2x^3$.

2. Unfortunately, not all functions have an inverse (or the inverse is very difficult to find). Develop a formula for the derivative of an inverse function that is independent of the inverse function itself.

Last Update: 8/2/18

3. Use the formula derived in #2 to find $(g^{-1})'(2)$ given $g(x) = x - \sin x$.

4. Develop formulas for $\frac{d}{dx}[\arcsin x]$ and $\frac{d}{dx}[\tan^{-1} x]$.

5. Calculate the derivative for the following functions.

a.
$$f(x) = x^3 \sin^{-1} 2x$$

b.
$$y = \arcsin \sqrt{x}$$

c.
$$g(u) = (\arctan u)^5$$

d.
$$x = \tan^{-1}(\cos y)$$

6. Use the following table to find the derivative of each at the given value of x.

X	-1	0	1	2
f(x)	0	6	2	-1
g(x)	5	1	0	1
f'(x)	3	1	-3	-2
g'(x)	-6	-2	1	0

a.
$$y = f^{-1}(x)$$
; $x = 2$

b.
$$y = g^{-1}(x)$$
; $x = 5$

c.
$$y = g^{-1}(f(x)); x = -1$$