3.1 - The Mean Value Theorem and Introduction to the Shape of a Curve

The Mean Value Theorem (MVT)

If a function f is continuous on $[a, b]$ and differentiable on (a, b), then there exists some value c on (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Rolle's Theorem is a special case of the MVT such that the average rate of change over $[a, b]$ is zero.

1. Verify that each of the following meet the conditions of the MVT. Determine the value(s) of c guaranteed by the MVT (or Rolle's Theorem) for each given function and interval.
a. $f(x)=4 \sqrt{2 x-1} ;[1,5]$
b. $g(x)=x^{4}-2 x^{2} ;[-2,2]$
c. $y=\tan ^{-1} x ;[-1,0]$
2. Does the MVT apply to the function $y=\frac{x}{3-x}$ on the interval $[-2,4]$? Justify your answer.
3. Does the MVT apply to the function $y=6-|x+1|$ on the interval $[-5,1]$? Justify your answer.

Increasing/Decreasing Intervals

Suppose f is continuous on $[a, b]$ and differentiable on (a, b).

- If $f^{\prime}>0$ for all x on (a, b), then f is increasing on (a, b).
- If $f^{\prime}<0$ for all x on (a, b), then f is decreasing on (a, b).

Definition of a Critical Number

A critical number is an x-value on the domain of a function f such that f^{\prime} is either zero or undefined.

First Derivative Test

Suppose that c is a critical number for f and that f is differentiable for all values of x on some interval containing c, except possibly at $x=c$.

- If f^{\prime} changes from positive to negative at c, then f has a relative (local) maximum at c.
- If f^{\prime} changes from negative to positive at c, then f has a relative (local) minimum at c.

4. Consider the graph of f given below. Answer and justify the following.
a. On what intervals is f increasing/decreasing?

b. At what value(s) of x does f have a relative maximum?
c. At what value(s) of x does f have a relative minimum?
5. Consider the graph of f^{\prime} given below. Answer and justify the following.
a. On what intervals is f increasing/decreasing?

b. At what value(s) of x does f have a relative maximum?
c. At what value(s) of x does f have a relative minimum?
