3.2 - What does f^{\prime} Say About f ?

Increasing/Decreasing Intervals

Suppose f is continuous on $[a, b]$ and differentiable on (a, b).

- If $f^{\prime}>0$ for all x on (a, b), then f is increasing on (a, b).
- If $f^{\prime}<0$ for all x on (a, b), then f is decreasing on (a, b).

Definition of a Critical Number

A critical number is an x-value on the domain of a function f such that f^{\prime} is either zero or undefined.

First Derivative Test

Suppose that c is a critical number for f and that f is differentiable for all values of x on some interval containing c, except possibly at $x=c$.

- If f^{\prime} changes from positive to negative at c, then f has a relative (local) maximum at c.
- If f^{\prime} changes from negative to positive at c, then f has a relative (local) minimum at c.

Find the intervals of increase/decrease and relative extreme values for the following functions. (Any problems not completed in class may be considered additional practice problems.)

1. $h(x)=5 x^{3}-3 x^{5}$
2. $y=x^{2} e^{x}$
3. $g(x)=\frac{x^{2}+1}{x^{2}-1}$
4. $f(x)=x^{2 / 3}(6-x)^{1 / 3}$
5. $r(\theta)=\ln (\sin \theta)$ for $0<\theta<3 \pi$
6. $\psi(x)=\frac{3 x-2}{\sqrt{2 x^{2}+1}}$
