3.3 - What does $f^{\prime \prime}$ Say About f ?

Intervals of Concavity

Suppose f is a twice-differentiable function.

- If $f^{\prime \prime}>0$ for all x on (a, b), then f is concave up on (a, b).
- If $f^{\prime \prime}<0$ for all x on (a, b), then f is concave down on (a, b).

Points of Inflection

The point $(a, f(a))$ is a point of inflection if:

- $f(a)$ and $f^{\prime}(a)$ are defined;
- $f^{\prime \prime}(a)$ is either zero or undefined; AND
- concavity changes for the graph of f at $x=a$.

Second Derivative Test

Suppose $f^{\prime \prime}$ is continuous on some open interval containing $x=c$.

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a relative minimum at $x=c$.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, then the test is inconclusive.

1. Consider the graph of f given below. Answer and justify the following.
a. What are the intervals of concavity for f ?

b. At what value(s) of x does f have a point of inflection?
2. Consider the graph of f^{\prime} given below. Answer and justify the following.
a. What are the intervals of concavity for f ?

b. At what value(s) of x does f have a point of inflection?
3. Find the intervals of concavity and points of inflection for the following.
a. $h(x)=5 x^{3}-3 x^{5}$
b. $y=x^{2} \ln x$
c. $h(x)=\frac{x}{(x+1)^{2}}$
4. Use the Second Derivative Test to determine all relative extreme values for the function $y=x^{2} e^{x}$.
