4.5 - Absolute (Global) Extreme Values

Absolute (Global) Extreme Values

An absolute maximum is the largest value of a function over an interval. An absolute minimum is the smallest value of a function over an interval.

Some functions have naturally-occurring absolute extreme values within their domains, while other functions must have domain restrictions established to obtain absolute extreme values.

It is possible for a function to have multiple absolute extreme values within an interval. It is also possible for a function to have no absolute maximum and/or no absolute minimum on an interval.

Extreme Value Theorem

If f is continuous on a closed interval $[a, b]$, then f attains both an absolute maximum and absolute minimum on $[a, b]$.

Finding Absolute Extreme Values on an Interval

- Find all critical numbers for f that lie in the given interval.
- Evaluate f at all critical numbers and endpoints.
- Identify the largest value(s) as absolute maximum value(s) and the smallest value(s) as absolute minimum value(s).

Find all absolute extreme values for each function over the given interval.

1. $y=x^{4}-8 x^{2},[-1,3]$
2. $f(x)=x e^{-x},-2 \leq x \leq 2$
3. $r(\theta)=\sin ^{2}(2 \theta), \frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}$
