4.7 - Applied Optimization, Part II

1. A landscape architect wishes to enclose a rectangular garden of area $1000 \mathrm{~m}^{2}$ on one side by a brick wall costing $\$ 90 / \mathrm{m}$ and on the other three sides by a metal fence costing $\$ 30 / \mathrm{m}$. Find the dimensions of such a fence that minimize cost.
2. A rectangular storage container with an open top and a square base is to have a volume of $20 \mathrm{ft}^{3}$. Material for the base costs $\$ 5$ per square foot. Material for the sides costs $\$ 2$ per square foot. Find the cost of materials for the cheapest such container.
3. Find the area of the largest rectangle that can be inscribed in a semicircle of radius 2 .
4. Find the area of the largest rectangle that can be inscribed in the region in quadrant I bounded by the graph of $y=\frac{4-x}{2+x}$.
