## 5.1 - Approximating the Area Under a Curve

1. Suppose $f(x)=x^{2}+1$. Approximate the area of the region bounded by $f$ and the $x$-axis over the interval $[0,2]$ using:
a. Riemann sum with left endpoints and 4 subintervals
b. 4 rectangles with midpoints as sample points

## c. trapezoids with 4 subintervals

2. Is your answer for 1(a) an overestimate or an underestimate? Justify your answer.
3. Suppose $f(x)=27-x^{3}$. Approximate the area of the region bounded by $f$ and the $x$-axis over the interval $[0,3]$ using:
a. Riemann sum with right endpoints and 9 subintervals,
b. 6 rectangles with midpoints as sample points, and
c. trapezoids with 3 subintervals.
4. Is your answer for 2(a) an overestimate or an underestimate? Justify your answer.
5. The following table gives the velocity $v$, measured in $\mathrm{ft} / \mathrm{s}$, of an object at various times $t$, measured in seconds.

| $t$ | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v(t)$ | 17 | 21 | 24 | 29 | 32 | 31 | 28 |

Approximate the distance traveled by the object over the interval $0 \leq t \leq 30$ using:
a. right Riemann sum with 6 subdivisions
b. midpoint Riemann sum with 3 subdivisions
c. trapezoids with 6 subdivisions
6. Use $T_{3}$ to approximate $\int_{1}^{2}\left(1-x^{2}\right) d x$.

