5.1 – Approximating the Area Under a Curve

- 1. Suppose $f(x) = x^2 + 1$. Approximate the area of the region bounded by f and the x-axis over the interval [0, 2] using:
 - a. Riemann sum with left endpoints and 4 subintervals

b. 4 rectangles with midpoints as sample points

Last Update: 8/7/18

c. trapezoids with 4 subintervals	
2. Is your answer for 1(a) an overestimate or an underestimate	?
Justify your answer.	

- 3. Suppose $f(x) = 27 x^3$. Approximate the area of the region bounded by f and the x-axis over the interval [0, 3] using:
 - a. Riemann sum with right endpoints and 9 subintervals,

b. 6 rectangles with midpoints as sample points, and

c. trapezoids with 3 subintervals.
4. Is your answer for 2(a) an overestimate or an underestimate? Justify your answer.

5. The following table gives the velocity v, measured in ft/s, of an object at various times t, measured in seconds.

	t	0	5	10	15	20	25	30
ν	r(t)	17	21	24	29	32	31	28

Approximate the distance traveled by the object over the interval $0 \le t \le 30$ using:

a. right Riemann sum with 6 subdivisions

b. midpoint Riemann sum with 3 subdivisions

c. trapezoids with 6 subdivisions

6. Use T_3 to approximate $\int_1^2 (1-x^2) dx$.