5.2 - The Definite Integral

The first few HW problems for this lesson provide you with further opportunities to practice Riemann sum approximations.

General Summation Rules

- Sum and Difference Rule:

$$
\sum_{k=1}^{n}\left(a_{k} \pm b_{k}\right)=\sum_{k=1}^{n} a_{k} \pm \sum_{k=1}^{n} b_{k}
$$

- Constant Multiple Rule:

$$
\sum_{k=1}^{n} c a_{k}=c \sum_{k=1}^{n} a_{k}
$$

- Constant Summation Rule:

$$
\sum_{k=1}^{n} c=n \cdot c
$$

- Sum of First n Integers:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

- Sum of First n Squares:

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

To find the definite integral, which computes the exact area under the curve defined by f over the interval $[a, b]$, we calculate the limit of an infinite Riemann sum:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \Delta x f\left(x_{k}\right)
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{k}=a+k \Delta x$. The above formula yields the limiting value of a right-endpoint Riemann sum.

1. Use the definition of the integral to compute

$$
\int_{1}^{3}\left(3 x^{2}-x+5\right) d x
$$

Creating a Bound for Definite Integrals

If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

2. Find a bound for the value of $\int_{0}^{1} e^{-x^{2}} d x$.
3. Find a bound for the value of $\int_{1}^{e} \ln x d x$.

Discuss the concept of signed, net area under the curve using Figures 3 and 4 on page 373 .
4. Calculate the following definite integrals using geometric area formulae.
a. $\int_{-2}^{2} \sqrt{4-x^{2}} d x$
b. $\int_{-2}^{6}(3-|x|) d x$

Properties of Definite Integrals

If f and g are continuous on the closed interval $[a, b]$ and $c \in \mathbb{R}$, then

$$
\begin{aligned}
& \text { - } \int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
& \text { - } \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \\
& \text { - } \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
& \text { - } \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\end{aligned}
$$

5. Use the graph of f given below to find the given integrals.

a. $\int_{0}^{3} f(t) d t$
b. $\int_{5}^{2} f(t) d t$
