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5.2 – The Definite Integral 
 

The first few HW problems for this lesson provide you with 

further opportunities to practice Riemann sum approximations. 

 

General Summation Rules 

 

 Sum and Difference Rule: 
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 Constant Multiple Rule: 
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 Constant Summation Rule: 
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 Sum of First n Integers: 
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 Sum of First n Squares: 
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To find the definite integral, which computes the exact area 

under the curve defined by f over the interval [a, b], we calculate 

the limit of an infinite Riemann sum: 
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   and kx a k x   . The above formula yields 

the limiting value of a right-endpoint Riemann sum.  

 

1. Use the definition of the integral to compute 
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Creating a Bound for Definite Integrals 

 

If  m f x M   for a x b  , then  
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2. Find a bound for the value of 
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3. Find a bound for the value of 
1

ln
e

x dx . 



Discuss the concept of signed, net area under the curve using 

Figures 3 and 4 on page 373. 

 

4. Calculate the following definite integrals using geometric 

area formulae.  
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Properties of Definite Integrals 
 

If f and g are continuous on the closed interval [a, b] and c , 

then 

 

         
b b b

a a a
f x g x dx f x dx g x dx      

 

    
b b

a a
c f x dx c f x dx   

 

    
b a

a b
f x dx f x dx    

 

      
b c b

a a c
f x dx f x dx f x dx     

 



5. Use the graph of f given below to find the given integrals. 
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