5.3 - Indefinite Integrals

Recall that the definite integral produces the net, signed area bounded by a curve and the x-axis over a specified interval.

The indefinite integral produces a function that is the antiderivative of the integrand.
Simple Example: $\int \sec ^{2} x d x=\tan x+C \quad$ (Why the $+C$?)
At this point, you are responsible for knowing integrals 2 - 11 from the back flap of your textbook. We will eventually add 12 , 13,16 , and 17 as well.

Find the following indefinite integrals.

1. $\int\left(4 x^{5}-\sin x+9\right) d x$
2. $\int\left(\frac{1}{x^{3}}-\frac{4}{\sqrt[3]{x}}\right) d x$
3. $\int\left(\sec \theta \tan \theta-3 e^{\theta}\right) d \theta$
4. $\int \frac{5 x^{2}-2 x-4}{x^{2}} d x$
