5.5 - The Fundamental Theorem of Calculus (FTC), Part 1

FTC 1

Suppose $g(x)=\int_{a}^{u(x)} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b). Then

$$
g^{\prime}(x)=\frac{d}{d x} \int_{a}^{u(x)} f(t) d t=f(u(x)) \cdot u^{\prime}(x)
$$

1. Find $\frac{d y}{d x}$ for the function $y=\int_{1}^{x^{2}}\left(1-t^{3}\right) d t$ in two ways:
(a) Solve for y using FTC 2 and derive, and (b) apply FTC 1.
2. Find the derivative of the following functions.
a. $g(x)=\int_{1}^{x} \sqrt[3]{t-5} d t$
b. $f(x)=\int_{\tan x}^{4} \ln t d t$
c. $r(y)=\int_{3 y}^{4-y^{2}} \log u d u$
3. Suppose $f(x)=\int_{2}^{x} y(t) d t$. Use the graph of y given below to answer the following.

a. Evaluate $f(-4), f(2)$, and $f(5)$.
b. Evaluate $f^{\prime}(-2), f^{\prime}(0), f^{\prime}(2.683)$, and $f^{\prime}(4)$.
c. Evaluate $f^{\prime \prime}(1), f^{\prime \prime}(2), f^{\prime \prime}(2.683)$, and $f^{\prime \prime}(4)$.
d. Determine the intervals of increase/decrease for f. At what point(s) does f attain relative and absolute extreme values?
e. Determine the intervals of concavity for f. For what value(s) of x does have f have point(s) of inflection?
