5.6 - Total Change

Total Change of a Quantity

Suppose that Q and R are continuous on $[a, b]$ and R is differentiable on (a, b). If R is a rate function and Q is the resulting quantity function (i.e., $R=Q^{\prime}$), then the change in Q over the interval $[a, b]$ is defined by

$$
\Delta Q=\int_{a}^{b} R(t) d t
$$

Given an initial quantity $Q(a)$, the final quantity obtained over the interval $[a, b]$ is defined by

$$
Q(b)=Q(a)+\Delta Q=Q(a)+\int_{a}^{b} R(t) d t
$$

1. During a 10 -hour manufacturing process, the temperature of a rod varies according the function $H(t)=0.005 e^{\frac{t}{2}} \sin \left(\frac{t}{2}\right)$, where H is measured in ${ }^{\circ} \mathrm{C} / \mathrm{hr}$ and t is measured in hours. The initial temperature of the metal rod was $37^{\circ} \mathrm{C}$.
a. Using appropriate units, describe the meaning of $\int_{0}^{10} H(t) d t$ in the context of this problem.
b. Find the temperature of the rod at $t=8$ hours.
c. At what time and temperature is the temperature of the rod (i) at a maximum, and (ii) at a minimum?

Rectilinear Motion

Suppose a, v, and s represent the acceleration, velocity, and position of an object moving along a linear path, respectively. Since $a=v^{\prime}$ and $v=s^{\prime}$, we have

- Velocity at time $t: v(t)=v(a)+\int_{a}^{t} a(u) d u$
- Position at time $t: s(t)=s(a)+\int_{a}^{t} v(u) d u$

Three important quantities for an object moving along a linear path over a closed interval $[a, b]$ are as follows:

- Displacement: $\int_{a}^{b} v(t) d t$
- Distance: $\int_{a}^{b}|v(t)| d t$
- Final Position: $s(b)=s(a)+\int_{a}^{b} v(t) d t$

2. An object moves along a horizontal line with position function $x(t)$. The velocity of the object is given by $v(t)=3 t^{2}+6 t-24$ for $t \geq 0$, where v is measured in ft / s and t is measured in seconds. Given that $x(1)=-10$, answer the following.
a. Find the distance travelled by the object on the interval $[0,3]$.
b. Find the position of the object at $t=4$ seconds.

2. (continued)

c. Find the position of the object as a function of t.
d. On the interval $[1,5]$, find the time and position of the object when it is (i) farthest left, and (ii) farthest right.

