6.1 - Average Value of a Function

Suppose a function f is continuous on the closed interval $[a, b]$. Then, the average value of f on $[a, b]$ is given by

$$
f_{\mathrm{ave}}=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

1. Calculate the average value of f over the interval $[1,4]$ using the graph of f provided below.

2. The function $R(t)=100+100 \sin (\pi t)$ describes the rate of flow of water (in liters per minute) traveling through a dam during the time interval $0 \leq t \leq 5$. Assuming t is measured in minutes, answer the following.
a. Use appropriate units to explain the meaning of $\int_{0}^{5} R(t) d t$
b. Use appropriate units to explain the meaning of $\frac{1}{5} \int_{0}^{5} R(t) d t$.
c. Calculate the average rate of flow of water traveling through the dam during the 5-minute time interval.
3. The following table gives the acceleration (in $\mathrm{ft} / \mathrm{s}^{2}$) of an object at various times.

t	0	4	9	11	14	21	24
$a(t)$	17	-8	-10	12	9	4	-2

a. Approximate the average acceleration of the object on the interval $0 \leq t \leq 24$ using a right Riemann sum with 6 subintervals and the data from the table.
b. Approximate the average acceleration of the object on the interval $0 \leq t \leq 11$ using trapezoids with 3 subintervals and the data from the table.

