6.2 – Area Between Curves

Area Between Curves for Functions of *x*

The area of the region bounded by the curves y = f(x) and y = g(x), such that $f(x) \ge g(x)$ for all $x \in [a, b]$, on the interval [a, b] is given by

$$A = \int_{a}^{b} (f(x) - g(x)) dx$$

Area Between Curves for Functions of y

The area of the region bounded by the curves x = f(y) and x = g(y), such that $f(y) \ge g(y)$ for all $y \in [a, b]$, on the interval [a, b] is given by

$$A = \int_{a}^{b} (f(y) - g(y)) dy$$

Last Update: 8/8/18

Find the area of the region bounded by the following curves.

1.
$$y = \frac{1}{x^2}$$
, $y = -2$, $x = 1$, $x = 5$

2.
$$x + 2y = 4$$
, $y = \sqrt{4 - x}$

3. Re-work #2 with a "dy" integral setup

4.
$$\alpha(x) = \sin x$$
, $\beta(x) = x^3 - 2x + 1$

5.
$$y = 2x$$
, $x = y^2 - 2y$

6.
$$y = \ln x$$
, $x = e - y^2$