6.2 - Area Between Curves

Area Between Curves for Functions of \boldsymbol{x}

The area of the region bounded by the curves $y=f(x)$ and $y=g(x)$, such that $f(x) \geq g(x)$ for all $x \in[a, b]$, on the interval $[a, b]$ is given by

$$
A=\int_{a}^{b}(f(x)-g(x)) d x
$$

Area Between Curves for Functions of \boldsymbol{y}

The area of the region bounded by the curves $x=f(y)$ and $x=g(y)$, such that $f(y) \geq g(y)$ for all $y \in[a, b]$, on the interval $[a, b]$ is given by

$$
A=\int_{a}^{b}(f(y)-g(y)) d y
$$

Find the area of the region bounded by the following curves.

1. $y=\frac{1}{x^{2}}, y=-2, x=1, x=5$
2. $x+2 y=4, y=\sqrt{4-x}$
3. Re-work \#2 with a " $d y$ " integral setup
4. $\alpha(x)=\sin x, \beta(x)=x^{3}-2 x+1$
5. $y=2 x, x=y^{2}-2 y$
6. $y=\ln x, x=e-y^{2}$
