6.3 - Volumes by Cross-Sectional Area

Cross-Sectional Area Perpendicular to the x-axis

If the cross-sectional area of a solid bounded by $a \leq x \leq b$ and perpendicular to the x-axis can be defined by a continuous function $A(x)$, then the volume of the solid is

$$
V=\int_{a}^{b} A(x) d x
$$

Cross-Sectional Area Perpendicular to the y-axis

If the cross-sectional area of a solid bounded by $a \leq y \leq b$ and perpendicular to the y-axis can be defined by a continuous function $A(y)$, then the volume of the solid is

$$
V=\int_{a}^{b} A(y) d y
$$

Consider the region bounded by the curves $y=2 x^{2}$ and $y=8$. Find the volume of the solid if:

1. cross sections perpendicular to the x-axis are squares
2. cross sections perpendicular to the y-axis are semicircles
3. cross sections perpendicular to the x-axis are equilateral triangles
4. cross sections perpendicular to the y-axis are isosceles right triangles with one leg on the $x y$-plane
