6.4 - Volumes of Solids of Revolution, Part I

Rotating About a Fixed Horizontal Line

Suppose a solid S is formed by rotating a region in the $x y$-plane about a fixed horizontal line.

- Disk: If the cross-sectional area of S bounded by $a \leq x \leq b$ is a circle of radius $R(x)$, then $A(x)=\pi(R(x))^{2}$. So, the volume of S is

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi(R(x))^{2} d x
$$

- Washer: If the cross-sectional area of S bounded by $a \leq x \leq b$ is an annulus such that $R(x)<r(x)$ for all $x \in[a, b]$, then $A(x)=\pi(R(x))^{2}-\pi(r(x))^{2}$. So, the volume of S is

$$
V=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi(R(x))^{2} d x-\int_{a}^{b} \pi(r(x))^{2} d x
$$

Rotating About a Fixed Vertical Line

Suppose a solid S is formed by rotating a region in the $x y$-plane about a fixed vertical line.

- Disk: If the cross-sectional area of S bounded by $a \leq y \leq b$ is a circle of radius $R(y)$, then $A(y)=\pi(R(y))^{2}$. So, the volume of S is

$$
V=\int_{a}^{b} A(y) d y=\int_{a}^{b} \pi(R(y))^{2} d y
$$

- Washer: If the cross-sectional area of S bounded by $a \leq y \leq b$ is an annulus such that $R(y)<r(y)$ for all $y \in[a, b]$, then $A(y)=\pi(R(y))^{2}-\pi(r(y))^{2}$. So, the volume of S is

$$
V=\int_{a}^{b} A(y) d y=\int_{a}^{b} \pi(R(y))^{2} d y-\int_{a}^{b} \pi(r(y))^{2} d y
$$

1. Consider the region R bounded by the curves $y=e^{-2 x}, y=0$, $x=0$, and $x=2$.
a. Find the volume of the solid formed when R is revolved about the x-axis.
b. Find the volume of the solid formed when R is revolved about the y-axis.
2. Consider the region D bounded by the curves $x=y^{2}-6$, $x=0$, and $y=0$ such that $y \leq 0$.
a. Find the volume of the solid formed when D is revolved about the y-axis.
b. Find the volume of the solid formed when D is revolved about the x-axis.
3. Consider the region Φ bounded by the curves $x=y^{2}$ and $y=x^{2}$. Find the volume of the solid formed when Φ is revolved about the y-axis.
4. Consider the region Ω bounded by the curves $y=e^{-2 x}$ and $y=2-x^{2}$. Find the volume of the solid formed when Ω is revolved about the x-axis.
