6.4 – Volumes of Solids of Revolution, Part I

Rotating About a Fixed Horizontal Line

Suppose a solid *S* is formed by rotating a region in the *xy*-plane about a fixed horizontal line.

• <u>Disk</u>: If the cross-sectional area of *S* bounded by $a \le x \le b$ is a *circle* of radius R(x), then $A(x) = \pi (R(x))^2$. So, the volume of *S* is

$$V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \pi \left(R(x) \right)^{2} dx$$

• <u>Washer</u>: If the cross-sectional area of *S* bounded by $a \le x \le b$ is an *annulus* such that R(x) < r(x) for all $x \in [a, b]$, then $A(x) = \pi (R(x))^2 - \pi (r(x))^2$. So, the volume of *S* is

$$V = \int_{a}^{b} A(x) dx = \int_{a}^{b} \pi (R(x))^{2} dx - \int_{a}^{b} \pi (r(x))^{2} dx$$

Rotating About a Fixed Vertical Line

Suppose a solid *S* is formed by rotating a region in the *xy*-plane about a fixed vertical line.

• <u>Disk</u>: If the cross-sectional area of *S* bounded by $a \le y \le b$ is a *circle* of radius R(y), then $A(y) = \pi (R(y))^2$. So, the volume of *S* is

$$V = \int_{a}^{b} A(y) dy = \int_{a}^{b} \pi(R(y))^{2} dy$$

• <u>Washer</u>: If the cross-sectional area of *S* bounded by $a \le y \le b$ is an *annulus* such that R(y) < r(y) for all $y \in [a, b]$, then $A(y) = \pi (R(y))^2 - \pi (r(y))^2$. So, the volume of *S* is

$$V = \int_{a}^{b} A(y) dy = \int_{a}^{b} \pi \left(R(y) \right)^{2} dy - \int_{a}^{b} \pi \left(r(y) \right)^{2} dy$$

- 1. Consider the region *R* bounded by the curves $y = e^{-2x}$, y = 0, x = 0, and x = 2.
 - a. Find the volume of the solid formed when *R* is revolved about the *x*-axis.

b. Find the volume of the solid formed when *R* is revolved about the *y*-axis.

- 2. Consider the region *D* bounded by the curves $x = y^2 6$, x = 0, and y = 0 such that $y \le 0$.
 - a. Find the volume of the solid formed when *D* is revolved about the *y*-axis.

b. Find the volume of the solid formed when *D* is revolved about the *x*-axis.

3. Consider the region Φ bounded by the curves $x = y^2$ and $y = x^2$. Find the volume of the solid formed when Φ is revolved about the *y*-axis.

4. Consider the region Ω bounded by the curves $y = e^{-2x}$ and $y = 2 - x^2$. Find the volume of the solid formed when Ω is revolved about the *x*-axis.